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A method for measuring nonlinear energy transfer in the frequency domain using a two-field model
of drift turbulence is proposed, and the theoretical motivation and experimental results are
presented. The approach is based on the cross-bispectral analysis of quadratic nonlinearities in the
turbulent internal and kinetic energy balance equations directly derived from the fluid plasma
continuity and momentum equations. Application of the technique to data from a laboratory plasma
experiment reveals the nonlinear energy transfer in weak collisional plasma drift turbulence; the
results show a transfer of density fluctuation energy toward higher frequency �which correspond to
smaller azimuthal spatial scales� and a transfer of kinetic energy to lower frequencies
�corresponding to larger azimuthal scales�. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3098538�

I. INTRODUCTION

The study of nonlinear dynamics of drift-wave turbu-
lence, and specifically the study of how large spatial scale
fluctuations and zonal flows are generated by nonlinear pro-
cesses and of how the resulting shear flows affect the turbu-
lent density fluctuation scale lengths directly addresses the
underlying physics for zonal/shear flow generation,1,2 gyro-
Bohm/Bohm scaling,3 and the origins of critical gradient
transport scaling in magnetically confined plasmas,4 as well
as provides tests of fundamental turbulence theory. As a re-
sult, the nonlinear spectral energy transfer mediated via
wave-wave coupling has received significant attention, as
given in Refs. 1 and 5–10. The bispectrum, which is related
to the degree of phase correlation among three waves, was
introduced to the plasma physics community by Kim and
Powers11 to study the quadratic nonlinearity of plasma fluc-
tuations, and was motivated by earlier applications of this
technique to neutral fluid turbulence, see, for example, Refs.
12–14. By assuming the detailed form of three-wave cou-
pling and deriving a power balance equation, Kim et al.10

went further and developed a way to experimentally deter-
mine the coupled energy flow among different spectral com-
ponents. In that work, the wave coupling coefficient had to
be known a priori in order to know this power transfer due
to the three-wave coupling.

Using a single-field model suitable for turbulence with
very small parallel electron dissipation, Ritz et al.15 then de-
veloped and subsequently Kim et al.16 refined a method
which enables one to quantitatively estimate the growth rate
�k, dispersion relation �̄k, and the wave-wave coupling co-
efficient �k

Q�k1 ,k2�, from which the power transferred
through nonlinear coupling can be calculated from experi-
mental data. In order to obtain two coupled equations that
yield the growth rate, dispersion relation and coupling coef-
ficient, the fourth-order spectral moment that occurs in their
work was approximated by the square of the second-order
moment using the Millionshchikov approximation.17 This
method was derived in the wavenumber domain and in prin-
ciple requires a knowledge of the temporal behavior of the

Fourier transformed potential ��k , t� �which is obtained from
simultaneous multipoint turbulence measurements� to per-
form the calculation. As a result, a simultaneous measure-
ment at a large number of spatially localized points is typi-
cally required, which is challenging due to practical �i.e.,
large number of channels� and physical �i.e., measuring tur-
bulence properties without much disturbance� limitations.
These works then used the Taylor frozen flow hypothesis to
relate wavenumber to frequency, and then argued that the
energy transfer could then be studied in the frequency do-
main, thereby avoiding the requirement for a large number of
spatial measurements.

Another concern in applying these techniques arises
from the multifield nature of plasma turbulence. Turbulence
in magnetic fusion plasmas is characterized by fluctuations
in density, potential, temperature, and magnetic field, and
these fluctuations can influence the turbulence dynamics and
resulting transport. All the methods mentioned above assume
that the observation of one field is sufficient to describe the
nonlinearity in the plasma, and the effects introduced by
cross-field interaction are small. For example, turbulence in
magnetic fusion confinement devices clearly exhibits multi-
field dynamics as shown, e.g., by the fact that the normalized
amplitudes of density and potential fluctuations are not
equal,18 in clear violation of the underlying assumptions of
all single-field drift turbulence models. Furthermore in the
edge plasma region where these techniques are usually ap-
plied there is a large phase shift between the density and
potential fluctuations,18 again invalidating the fundamental
model on which these single-field energy transfer models are
based. In low temperature plasmas found e.g., in the con-
trolled shear decorrelation experiment �CSDX� �UC San Di-
ego� device19 used in this work, the measured density and
potential fields have a cross correlation significantly less than
unity, as shown by Fig. 3�d�, and have a nonzero density-
potential cross phase, again in clear violation of the assump-
tions of single-field models. Similar observations hold for the
turbulence in the edge and scrape-off layer region of confine-
ment experiments. As a result, studies of turbulence nonlin-
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ear dynamics that are to be compared against such experi-
ments should include at least two fields �e.g., at least density
and velocity or electrostatic potential as well as temperature
fluctuations if those are important for the turbulence dynam-
ics� and cannot rely upon models that are based upon the
single-field model of drift turbulence.

Nonlinear energy transfer in simple models of drift-wave
turbulence has been extensively studied by many groups us-
ing both analytic and computational approaches �see, for in-
stance, the work by Camargo et al.20 for a comprehensive
numerical investigation of the issue�. Recently Manz et al.21

analyzed experimental measurements in wavenumber space
using a single-field model applied separately to density and
potential measurements and showed that turbulent density
fluctuation energy was transferred to small scales, while tur-
bulent kinetic energy was transferred to large scales. The first
use of a multifield approach to study nonlinear turbulence
dynamics via direct calculation of cross bispectra was per-
formed by Holland et al.22 using beam emission spectros-
copy �BES� data. The results showed that radially sheared,
oscillating poloidal velocity of a geodesic acoustic mode
caused the density fluctuation energy to move toward higher
frequency. A brief discussion of multifield nonlinear energy
transfer in drift turbulence was also included in the most
recent paper by Tynan et al.23

In this paper we propose a technique to study the non-
linear transfer of turbulence energy in the frequency domain
in a system that is described by two fields �density and po-
tential�. By combining the derived energy balance equations
with a cross-bispectral analysis of the nonlinear terms, the
nonlinear energy transfer due to the wave-wave interactions
of the drift fluctuations can be determined. Although it is not
discussed here, the technique can also be extended in a
straightforward manner to turbulence involving temperature
fluctuations.

The rest of this paper is arranged as follows: Sec. II
presents the theoretical derivation and interpretation of non-
linear energy transfer coefficients and their realization in ex-
periments. Section III gives a brief description about the ex-
perimental setup. Section IV is a sample of experimental
results of nonlinear energy transfer. Section V includes a
summary of the contents and some discussions.

II. THEORETICAL DERIVATION AND INTERPRETATION
OF NONLINEAR ENERGY TRANSFER TERMS

Although a similar derivation of spectral energy transfer
terms was reported, as given in Ref. 20, and in particular the
derivation and study of internal energy transfer in frequency
space has been published in Ref. 22, a brief derivation for
both internal and kinetic energy transfer terms in frequency
domain is included here to help to understand the experimen-
tal results from both technical and physical perspective of
views. The three-wave coupling enters when a Fourier trans-
form is performed on either the continuity or momentum
equation, with the convective derivative u� ·�n or u� ·�u� ,
where u� is the fluid velocity that is approximated by
u� �−�����B� /B2� in the following derivation. From elec-
tron momentum and electron continuity equations, an energy

transport equation for the spectra of density fluctuations is
derived in the frequency domain.

The electron continuity equation:

�ne

�t
+ �� · �neu� e�� +

�

�z
�neue�� = 0 �1�

in which the electron velocity perpendicular to magnetic
field is dominated by E� �B� and diamagnetic drift, can be
written as �with the unit vector in the magnetic field direction
denoted by ẑ and quasineutral assumption ne�ni=n applied�

� �

�t
+ u�� · ���n = −

�

�z
�nu�� , �2�

where u��= ẑ���� /B is the E� �B� velocity. The plasma den-
sity fluctuations can be represented in the frequency domain
by n�x� , t�=	�n��x� , t�ei�t, where we have allowed the coeffi-
cients to possibly vary in time �we discuss this point at
length below�. A similar expression can be used to decom-
pose the velocity into the frequency domain. Therefore we
can then write the time derivative in Eq. �2� as

�n�x� ,t�
�t

=
�

�t
	
�

n��x� ,t�ei�t

= 	
�

ei�t�n��x� ,t�

�t
+ i�ei�tn��x� ,t��

= 	
�

� �

�t
+ i��n��x� ,t��ei�t. �3�

As we discuss below, there are limitations on the rate of
change in the frequency components, which must be tested
empirically from experimental data. Next, we Fourier trans-
form Eq. �2� into the frequency domain, and denoting
n��x� , t� as n� we then have

�

�t
n� + i�n� + 	

�1

�u���−�1
· ���n�1

= −
�

�z
F�nu�� , �4�

where F denotes the Fourier transform. Multiply both sides
by the conjugate of n�, i.e., n�

� ,

n�
� �n�

�t
+ i��n��2 + 	

�1

n�
� �u���−�1

· ���n�1

= − n�
� �

�z
F�nu�� . �5�

Adding the above equation to its conjugate and ensemble
averaging over a sufficient number of realizations, we can
form an ensemble-averaged energy conservation equation in
the frequency domain:

⇒ 
 1

2

� �n��2

�t
� = 
− Re
	

�1

n�
� �u���−�1

· ���n�1��
+ 
− Re
n�

� �

�z
F�nu���� . �6�

The above Eq. �6� simply states that the rate of change in
internal energy at the frequency � is determined by quadratic
coupling, linear growth or damping at �, and parallel dissi-
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pation of parallel electron motion. The physical meaning of
each term is given below:


 1

2

� �n��2

�t
�

is the rate of change in density fluctuation spectra n�
2 �de-

noted as the internal energy� at one specific spatial position;


− Re
	
�1

n�
� �u���−�1

· ���n�1��
is the nonlinear wave-wave coupling term that determines
how much energy flows into or out of the Fourier component
at the frequency of � due to three-wave coupling. This qua-
dratic nonlinear term comes from the Fourier transform of
the convective derivative, which is in the form of a convo-
lution, and thus imposes a selection rule �=�1+�2 on the
nonlinear coupling. Since this nonlinear coupling term is re-
lated to density autospectrum, it is called the internal energy
transfer term, denoted as Tn here.

Assuming an isothermal plasma, u� can be obtained from
the parallel component of the electron momentum equation.
Substituting this result into Eq. �6�, then use the following

normalizations: n̂e� ñe /ne0, �̂�e� /kBTe, t̂� t / �1 /�ci�, �̂�

��s��, �� /�z�= �1 /�efree��� /�ẑ�, and L̂nr�Lnr/�s, where �s

�cs /�ci=�kBTe /M�ci
2 is the effective ion Larmor radius

calculated with electron temperature, �efree=uthe /	ei

= �kBTe /me�1/2�me /nee
2
� is the electron mean free path, and

Lnr�n0�x� /�rn0 is the local density gradient scale length. By
using the quasineutrality assumption and dropping “^”, the
internal energy equation becomes


 1

2

� �n��2

�t
� = 
− Re
	

�1

n�
� �ẑ � ����−�1

· ���n�1��
− 
 1

Lnr
Re�n�

� ������
+ 
 	ei

�ci
Re
n�

� �2

�z2 �n� − ����� . �7�

Here −��1 /Lnr�Re�n�
� ������ indicates that energy can be ex-

tracted from the mean density gradient and hence is the lin-
ear driving term, and ��	ei /�ci�Re�n�

� ��2 /�z2��n�−�����
means that energy can be dissipated via electron-ion colli-
sion, hence is the parallel dissipation term. The above Eq. �7�
forms the basis of one of the coupled Hasegawa–Wakatani24

equations; however here it is expressed solely in the fre-
quency domain without the corresponding spatial Fourier
transform used in that original work.

By performing a similar process on the ion momentum
equation, with the same normalizations as before, an energy
balance equation related to velocity fluctuation can be ob-
tained,


 1

2

� ������2

�t �
= 
− Re	

�1

�ẑ � ����
� � · ��ẑ � ����−�1

· ���

�ẑ � ����1
��� + 
 ��

�ci�s
2Re��ẑ � ���̂�

� � · ��
2

�ẑ � ���̂���� + 
−
	i−n

�ci
������2� , �8�

where �� is the ion viscosity, 	i−n is the ion-neutral collision
rate, and neutrals have been assumed to have negligible ve-
locity.

The above energy balance equation involves only the
plasma potential, in which


 1

2

� ������2

�t
�

is the rate of change in the E� �B� velocity fluctuation energy
at one specific spatial position.


− Re	
�1

�ẑ � ����
� � · ��ẑ � ����−�1

· ���

�ẑ � ����1
���

determines how much energy is nonlinearly coupled into or
out of the frequency �. Again, a selection rule �=�1+�2 is
imposed on the nonlinear coupling. This nonlinear term is
called the kinetic energy transfer term, Tu, due to the fact that
it is related to the perpendicular kinetic energy evolution.


 ��

�ci�s
2Re��ẑ � ���̂�

� � · ��
2 �ẑ � ���̂����

shows the rate at which energy can be damped due to ion
viscosity.


−
	i−n

�ci
������2�

is a flow damping term due to ion-neutral collisions, or due
to any other damping mechanism �e.g., trapped-passing ion
collisions in a torus�, that is simply proportional to the tur-
bulent kinetic energy and a momentum exchange rate.

The energy conservation Eqs. �7� and �8� are simply the
Fourier transformed fluid continuity and momentum equa-
tions, where the internal and kinetic nonlinear transfer terms
Tn and Tu are not related to a specific preassumed wave
coupling form, and are simply derived from the convective
derivatives in the continuity and momentum equations.
Therefore the properties of internal and kinetic energy trans-
fer terms are very basic and physical. By expanding the vec-
tor identities for a magnetized plasma with B=Bẑ, the inter-
nal and kinetic energy transfer terms can be rewritten as
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Tn��� � 
− Re
	
�1

n�
� �ẑ � ����−�1

· ���n�1��
� �Re� 	

�1=−fnyq

��−�1�
fnyq

�1=+fnyq

n�
�� ���−�1

�y

�n�1

�x

−
���−�1

�x

�n�1

�y
��� , �9�

Tu��� � 
− Re	
�1

�ẑ � ����
� � · ��ẑ � ����−�1

· ����ẑ

� ����1
���

� �Re 	
�1=−fnyq

��−�1�
fnyq

�1=+fnyq 
 ���
�

�x
� ���−�1

�y

�2��1

�x2

−
���−�1

�x

�2��1

�x � y
� +

���
�

�y
� ���−�1

�y

�2��1

�x � y

−
���−�1

�x

�2��1

�y2 ��� , �10�

where x �y� denote the radial �azimuthal or poloidal� direc-
tions, respectively.

With energy balance Eqs. �7� and �8�, it can be seen that
Tn and Tu are actually energy flow rate. If Tn is positive while
all other terms in Eq. �7� are constant, then the energy term
�n��2 will grow; if Tn is negative then �n��2 decreases. Simi-
larly positive Tu renders a growth in �����2 while negative
Tu renders a decrease in �����2. Therefore the bispectral
terms Tn and Tu in the energy balance equations not only tell
how various three-wave interactions transfer energy into or
out of fluctuations with frequency �, but also can be used to
determine the rate and direction of the nonlinear energy
transfer.

By splitting the Tn and Tu into parts, more detailed phys-
ics can be obtained. For example, if the first part,

Re
 1

M
	
k=1

M
���

�

�x

���−�1

�y

�2��1

�x2 �
k

,

of the expanded form of the kinetic energy transfer term is
positive �where k denotes the kth ensemble of a total of M
available ensembles�, it means ������2 is gaining energy
because ���−�1

/�y and �2��1
/�x2 interact to give energy to

��� /�x. Or physically this means that u���� gains energy
from the radial velocity ur��−�1� and the azimuthal velocity
shear �u���1� /�r.

If the Fourier transformed conservation equation �e.g.,
Eq. �4� or �8�� is to exist for all frequencies, it is necessary
that the equation satisfies a slowly varying assumption for all
frequencies of interest. Thus if the conservation equation is
written as A�t�=0 then the Fourier transform A��t� will exist

only if �1 /A��t����A��t� /�t��� for the frequencies of inter-
est. This assumption must be verified from the experimental
data.

The calculation and interpretation of the above Tn and Tu

needs a thorough understanding of the three-field cross
bispectrum. The autobispectrum introduced by Kim and
Powers11 can be easily generalized to measure the phase co-
herence among three different fields. The cross bispectrum is
defined as

ŜXYZ�f1, f2� � E��X�f�Y��f1�Z��f2���

=
1

M
	
k=1

M

�X�f�Y��f1�Z��f2��k, �11�

or writing each signal in terms of an amplitude and phase, it
can alternatively be written as

ŜXYZ�f1, f2� �
1

M
	
k=1

M

��X�f�Y��f1�Z��f2��ei���k, �12�

where ����X�f�−�Y�f1�−�Z�f2� denotes the phase mis-
match for a given ensemble. Clearly if �� varies randomly
across the ensemble average �i.e., if the random phase ap-

proximation is satisfied� then ŜXYZ�f1 , f2� will vanish; alter-
natively if �� has a reproducible range of values across the

ensemble average, then ŜXYZ�f1 , f2� will have a finite value
and since the cross bispectrum is related to the energy trans-
fer in the Fourier domain, there will be a finite exchange of
energy between the involved frequencies in such cases. The
calculation region can be greatly reduced because of the
symmetry properties of the cross bispectrum and by the fact
that often the fluctuation frequencies of interest are much
smaller than the Nyquist frequency. Figure 1 shows the typi-
cal calculation region for the three-field cross bispectrum

FIG. 1. �Color online� Calculation region for three-field �X, Y, and Z� cross
bispectrum and cross bicoherence. The x-axis is for field X and y-axis is for
field Y. Gray �red�: f , f1 , f2�0, means that the way Y�f1� and Z�f2� interact
is �f �= �f1�+ �f2�, and the phase relation is �X�f�=�Y�f1�+�Z�f2�. Light gray
�green�: f , f1�0 and f2�0, the frequency relation is �f �= �f1�− �f2�, and the
phase relation is �X�f�=�Y�f1�−�Z��f2��. Dark gray �blue�: f , f2�0 and f1

�0, the frequency relation is �f �= �f2�− �f1�, and the phase relation is �X�f�
=�Y�f2�−�Z��f1��.
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with light gray �green�, gray �red�, and dark gray �blue� tri-
angles, where the interested frequencies �assumed

9.5 KHz� are much smaller than the typical Nyquist fre-
quency. Suppose that three different plasma waves with fre-
quencies, e.g., 8, 6, and 2 kHz, interact with each other.
There will be a total of six different permutations for this
interaction as shown by Table I, where each column stands
for a different physical coupling process since it involves
coupling among three fields �X, Y, and Z�. For one-field cou-
plings where X=Y =Z, i.e., the autobispectrum or autobico-
herence, these six different combinations stand for exactly
the same physical process.

In Fig. 1, with the x-axis for field X and y-axis for field
Y, all six different combinations are indicated accordingly by
the red dots. In the region with gray �red� color �f , f1 , f2

�0� Y�f1� and Z�f2� interact so that �f �= �f1�+ �f2�, and the
phase relation is �X�f�=�Y�f1�+�Z�f2�, e.g., for the dot at
�f =8 kHz, f1=2 kHz� we can infer that f2 corresponding
to field Z must be 6 kHz, and the phase relation for this
coupling must be �X�8 kHz�=�Y�2 kHz�+�Z�6 kHz�. In the
light gray �green� region, f , f1�0 and f2�0, the frequency
relation is �f �= �f1�− �f2�, and the phase relation is �X�f�
=�Y�f1�−�Z��f2��. In the dark gray �blue� region, f , f2�0 and
f1�0, the frequency relation is �f �= �f2�− �f1�, and the phase
relation is �X�f�=�Y�f2�−�Z��f1��. Since the frequency selec-
tion rule for three-wave coupling is typically written as f
= f1+ f2, negative frequencies are used here to correspond to
physical processes when two frequencies subtract to generate
the third, e.g., f1 subtract f2 to generate f .

III. EXPERIMENTAL MEASUREMENT OF MULTIFIELD
NONLINEAR ENERGY TRANSFER

In this paper the radial direction is denoted as x̂, and the
azimuthal or poloidal direction is denoted as ŷ direction. To
experimentally determine the internal energy transfer term Tn

one can measure the density and potential fluctuations, com-
pute their derivatives in the radial and azimuthal directions,
Fourier transform those quantities into frequency domain to
find n�, �n� /�x, �n� /�y and ��� /�x, ��� /�y, and finally
construct Tn by convolution. For the kinetic energy transfer
Tu, plasma potential and its first and second derivatives are
needed. The quantities needed to infer both Tn and Tu can be
obtained experimentally using the spatial layout of density
and potential measurements shown in Fig. 2.

In this figure potential channels are indicated by blue
and density channels by red. For a cylindrical plasma, which
is typical in linear or toroidal machines, the direction rela-

tionships are x̂↔ r̂ and ŷ↔ �̂. Finite difference method can
be used to compute all derivatives. For example, the central
finite difference approximation can be used to calculate

�� /�x �x=xi
���i+1−�i−1� / �2�x� with a leading error of

��x�2, and �2� /�x2 �x=xi
���i−1+�i+1−2�i� / ��x�2 with a

leading error of ��x�2. With additional grid points, a higher
accuracy of finite difference can be achieved. In experiments,
the choice of �x should be much less than the size of typical
turbulent structures, and at the same time be big enough so
that the phase difference among adjacent tips is measurable.
In our experiment, the typical turbulent correlation lengths
are 0.6–2 cm,25 the ion sound radius is �S= �Cs /�Ci

�
�1 cm, and the spatial separations between tips are 1.5 mm
in radial direction and 2.5 mm in azimuthal direction.

Because all the derivatives are computed in a rectangular
coordinate for cylindrical plasmas in our experiment, it is
required that the plasma scale is much larger than the scale
of the measurement array. Alternatively one can layout the
grid points on magnetic surfaces and correspondingly uses a
cylindrical coordinate to compute all the derivatives. The
layout in Fig. 2 is set up such that the center of potential
channels is the same as the center of density channels in both
azimuthal and radial directions, which makes every calcu-
lated derivative centered and thus eliminates the phase shift
in both radial and azimuthal directions. If the two 3�3 array
are spatially shifted by a displacement vector �x relative to
each other, then the phase shift k ·�x incurred from this ef-
fect due to the wavenumber k would need to be accounted
for in computing the cross spectral quantities. As long as this
shift is small compared to the turbulence scale lengths, then
such a correction can in principle be applied. In our experi-
ment, the two 3�3 arrays are shifted by 1.5 mm along the
magnetic field line, but the corresponding phase shift is neg-
ligible since k� �k� for the fluctuations. Generally the den-
sity and potential �or velocity� field can be measured in a
variety of ways, such as Langmiur probe, heavy ion beam
probe26 or velocimetry of BES.27 For the study of plasmas in

TABLE I. A layout of all possible combinations of three-wave interactions with different frequencies: 8, 6, and
2 kHz.

X 8 kHz 8 kHz 6 kHz 6 kHz 2 kHz 2 kHz

Y 2 kHz 6 kHz 8 kHz �2 kHz 8 kHz �6 kHz

Z 6 kHz 2 kHz �2 kHz 8 kHz �6 kHz 8 kHz

: satred I

: floatblue V

2.
5m
m

3.0mm

plasma source

ˆ ˆorr x

3.0mm

ˆ ˆorr x

ˆ
ˆ

or
y

θ

ˆ ˆb or z ˆ ˆb or z

ˆ
ˆ

or
y

θ

( )a ( )b

: satred I

: floatblue V

FIG. 2. �Color online� Spatial layout of the measurement grid points. �b� is
the side view of �a�. All the probe tips are identical, but the Vfloat tips were
purposely drawn smaller in �b� in order to distinguish the Isat tips from Vfloat

tips. All the derivatives �� /�x, �� /�y, �2� /�x2, �2� /�y2, and �2� /�x�y can
be computed using finite difference method from the nine channels of po-
tential �dark gray �blue��. n, �n /�x, and �n /�y can be computed from the
nine channels of density �gray �red��.
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linear devices or edge plasmas in tokamaks, a multipoint
Langmiur probe array is a good candidate for its excellent
spatial resolution, relative easiness to design and construct,
and the lower cost compared to other techniques. However,
we explicitly note that such nonlinear energy transfer studies
are also possible with these other diagnostic approaches pro-
vided that the necessary multipoint data can be obtained.

The experiment for nonlinear energy transfer measure-
ment has been carried out on a cylindrical linear plasma de-
vice CSDX in the University of California, San Diego. For
the experiments reported here the discharges were operated
with 1000 Gauss magnetic field and 3.0 mtorr argon filling
pressure, the helicon plasma source was operated at 13.56
MHz with a power of 1.5 KW; the resulting plasma had a
peak on-axis density �1013 cm−3 and on-axis electron tem-
perature �3 eV. The plasma source has a diameter of 10
cm, and the vacuum chamber is with a diameter of 20 cm.
Further details about the device and characteristics of the
plasma and of the transition to a state of weak turbulence can
be found elsewhere.19,28

A dual 3�3 tip Langmiur array has been built and in-
stalled on CSDX, which enables us to simultaneously mea-
sure nine channels of plasma density and nine channels of
floating potential on an x-y grid, as shown in Fig. 2. There-
fore all the quantities needed for constructing the internal
and kinetic energy transfer terms can be obtained by this
probe array. Although for the purpose of measuring energy
transfer only the first derivatives of density are needed, thus
four channels of density are enough, the five redundant den-
sity channels either can be used to compute the second de-
rivatives or can be setup for other purposes such as triple
probe array to measure plasma potential and electron tem-
perature. A general concern could be that the layout of Isat

and floating potential tips would introduce a shadowing ef-
fect among them, especially between Isat and floating poten-
tial tips, and thus could distort the measured bispectra. Ex-
periments have been carried out to compare the obtained
kinetic energy transfer coefficients at the conditions with or
without Isat bias voltage. No significant differences have been
found between these two cases suggesting that any such
shadowing effects are small.

IV. EXPERIMENTAL RESULTS

Figure 3 shows the typical profiles of CSDX plasma op-
erated with a magnetic field of 1000 G, an argon fill pressure
of 3.0 mtorr, and a rf power input of 1.5 KW. The plasma
density profile presented in Fig. 3�a� is measured by the 18-
tip probe array. Figure 3�b� shows the plasma azimuthal ve-
locity profile calculated from two-dimensional �2D� visible
light imaging using a time delay estimation technique. We
find that the azimuthal velocity grows and decays with a
frequency of �250 Hz; the radial profiles show that the
shearing rate also varies in magnitude at the same
frequency.29 Previous results, which were obtained by en-
semble averaging over many such oscillation cycles showed
that the resulting time-averaged shear flow is consistent with
the measured time-averaged turbulent Reynolds stress and
the estimated damping profiles.1 As we show below, the
bispectral calculation shows that both internal and kinetic
energy are transferred from drift turbulence to this velocity
oscillation. Figure 3�c� is the time-averaged electron tem-
perature profile taken from a previous published paper.28

All the potential and density channels were simulta-
neously sampled at 500 kHz, and the total sampling time was
10 s. So for each channel, a total of 5�106 sampling points
has been acquired, which were then divided into one to sev-

( )a ( )b

( )c ( )d

FIG. 3. �Color online� �a� Time-averaged plasma density. �b� Time resolved
plasma azimuthal velocity profile calculated from 2D visible light imaging
using time delay estimation �Figure reprinted with permission from Ph.D.
thesis of Yan Z �Ref. 29�.� It is found that the velocity at the shadowed
region r�3.6 cm develops and decays at the frequency around 250 Hz. �c�
Time-averaged electron temperature profile. �Reprinted with permission
from G. R. Tynan et al., Phys. Plasmas 11, 5195 �2004�.� �d� Correlation
between density and potential fluctuations at shear layer.

( )a ( )b

FIG. 4. Convergence test for the
bispectral calculation for the internal
and kinetic energy transfer terms
Tn�f , f1� and Tu�f , f1� at the frequen-
cies f =0.25 kHz and f1=10.25 kHz.
�a� is for Tn�f =0.25 kHz, f1

=10.25 kHz� and �b� is for Tu�f
=0.25 kHz, f1=10.25 kHz�.
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eral thousand independent realizations to produce statisti-
cally converged bispectra by ensemble averaging. Figure 4
shows the convergence test for the bispectral calculation of
the internal and kinetic energy transfer terms Tn�f , f1� and
Tu�f , f1� at the frequencies f =0.25 kHz and f1=10.25 kHz.
There we can see that both the internal and kinetic bispectra
reasonably converge when at least �1000 realizations are
used. As is shown below, the existence of very slowly vary-
ing nonlinearly driven fluctuations such as zonal flows im-
posed a physics requirement for high frequency resolution.
This requirement, combined with the large number of en-
sembles required for convergence implies the requirement
for long time series �with �107 samples per channel� and
highly stationary experimental conditions. A similar number
of realizations are required to converge at other combinations
of f and f1.

Before examining the nonlinear turbulence energy trans-
fer processes of interest, it is important to determine if the
ansatz �1 / �n��x� , t������n��x� , t�� /�t��� is satisfied. To deter-
mine this, the experimentally measured density was first nor-
malized by its time-averaged value, and then bandpass fil-
tered for several representative frequency ranges. The
relevant frequency ranges are chosen based upon previously
published spectral results19 and plotted as a function of time
in Figs. 5�a�–5�c�. Figure 5�a� corresponds to the bandpass

filtered over a range 0.2–0.5 kHz, in which the envelope
of density fluctuations varies with a period of 15–20 ms
�50–37 Hz�, a factor of 6 slower than the corresponding
phase change frequency approximated by the center value
of the filter. Figure 5�b� is density fluctuation filtered by
0.8–1.2 kHz, where the envelope shows a period of 6–9 ms
�110–170 Hz�, i.e., a factor of �10� slower variation than
the fluctuation frequency. Figure 5�c� is the density fluctua-
tion filtered by 9.0–10.0 kHz, and the envelope is with a
period of 2.0–2.3 ms �430–500 Hz�, which again is a factor
of �10–20� longer than the fluctuation period under con-
sideration. Thus from Figs. 5�a�–5�c� we can tell that in our
linear device the amplitude of density fluctuations varies by
factors of �5–20� slower than the corresponding phase
changes. By following the same process, it has been verified
that this is also true for ���. Figures 5�d� through 5�f� show
similar results calculated for the left hand side of Eq. �2�
from measured data. We therefore conclude from this study
that the slowly varying assumption is reasonably well satis-
fied by the experimental data.

The internal and kinetic energy transfer functions de-
rived in this manner are shown in Fig. 6, which was obtained
when the probe was centered on the shear layer located at
r=3.6 cm, with magnetic field of 1000 G, rf power of
1.5 kW, and pressure of 3.0 mtorr. These conditions are the

( )a

( )b

( )c

( )d

( )e

( )f

FIG. 5. �Color online� �a� 0.2–0.5 kHz
bandpass-filtered density fluctuation
ñ�t� plotted as a function of time. The
envelope shows a period of 15–20 ms,
indicating a slowly variation of the
spectra at 0.2–0.5 kHz. �b� 0.8–1.2
kHz bandpass-filtered density fluctua-
tion. The envelope has a period of 6–9
ms. �c� 9.0–10.0 kHz filtered density
fluctuation with a enveloped period of
2–4 ms. �d� 0.2–0.5 kHz bandpass-
filtered total derivative of density fluc-
tuation A�t����� /�t�+u� ·��n�t� plot-
ted as a function of time. The envelope
shows a period of 15–20 ms, indicat-
ing a slowly variation of the spectra
at 0.2–0.5 kHz. �e� 0.8–1.2 kHz
bandpass-filtered total derivative of
density fluctuation. The envelope has a
period of 8–10 ms. �f� 9.0–10.0 kHz
filtered total derivative of density
fluctuation with a enveloped period of
3–4 ms.
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same as those used to study the origin of the shear layer in
previous work.1,5 In computing the bispectra in Fig. 6, for
each channel a total of 5�106 samples were divided into
1200 ensembles, with 4096 samples in each ensemble. Since
a sampling frequency of 500 kHz was used when acquiring
the data, the frequency resolution in Fig. 6 is about 120 Hz.
Figure 6�a� shows the internal energy transfer Tn�� ,�1�, and
Fig. 6�b� shows the kinetic energy transfer coefficient
Tu�� ,�1�.

From the energy balance Eqs. �7� and �8�, we know that
positive �negative� internal or kinetic energy transfer means
that fluctuations at frequency � gain �lose� energy through
the wave-wave interaction with �1 and �−�1. In both plots
the x-axis is � and y-axis is �1. Several prominent three-
wave coupling triplets are indicated in these two figures,
such as the triplet �10 K, 5 K, 5 kHz� in Fig. 6�a�. The
negative value for Tn�� ,�1� at ��=10 kHz, �1=5 kHz�
means that density fluctuation n at 10 kHz loses energy to
either ��� at 5 kHz or ��n at 5 kHz ��−�1=5 kHz�.
There is an uncertainty of which frequency is receiving en-
ergy because we can only tell from the energy conservation
Eq. �7� that the frequency � is gaining or losing energy, but
it is not possible to determine into which wave the energy is
moving. Similarly in Fig. 6�b� the positive value for
Tu�� ,�1� at ��=0.3 kHz, �1=10 kHz� means that the ve-
locity �ẑ���� /B� at 9.7 kHz interacts with the vorticity
��

2 � at 10 kHz to transfer energy to the velocity fluctuation
occurring at 0.3 kHz. The frequency and wave number re-
solved two-point estimated spectrum has been measured on
CSDX,1 which shows that small scale drift turbulence is
typically with a k� bigger than 1 cm−1 and with a frequency
of several kilohertz to 20 kHz, while large-scale azimuthal
flow has both the k� and frequency close to zero. By using
this measured local spectra, we can conclude that the posi-
tive value for Tu�� ,�1� at ��=0.3 kHz, �1=10 kHz� in
Fig. 6�b� is a clear sign of energy transfer from a turbulent
flow to a large-scale shear flow since we have found that this
0.3 kHz velocity fluctuation is associated with the slow evo-
lution of the sheared zonal flow as summarized above and

shown in detail elsewhere.29 In Fig. 6�b� the negative value
for Tu at ��=10 kHz, �1=0.3 kHz� means the velocity at
10 kHz loses energy through three-wave coupling with ��

2 �
at 0.3 kHz and the velocity at 9.7 kHz. If we expand Tu into
four different parts and calculate them separately from ex-
perimental data, we will find that there is one part,

Re� 1

M
	
k=1

M 
 ���
�

�x

���−�1

�y

�2��1

�x2 �
k
� ,

that dominates others. This means that the nonlinear kinetic
energy transfer to azimuthal shear flow is mostly due to the
radial flux of vorticity �due to the fact that in the experimen-
tal data �2� /�x2 dominates �2� /�y2 and �2� /�x�y in the
expansion form of ��

2 ��. Or it can be interpreted that azi-
muthal velocity shear couples with radial velocity to transfer
energy to shear flow. The internal energy transfer also has a
similar feature. These relevant arguments and physical inter-
pretation will be covered in a separate paper.

V. SUMMARY AND DISCUSSIONS

In this paper, a method for studying the nonlinear energy
transfer with a two-field �density and potential� model, in-
cluding both theoretical derivation and experimental setup, is
proposed and explained. Experimental results measured at
the shear layer give a clear picture of wave coupling and
energy transfer. This is the first time that nonlinear energy
transfer is experimentally studied using a two-field model in
frequency domain.

Calculating bispectrum �essentially a convolution� is
slow and computationally expensive. Instead of doing con-
volutions in frequency domain, an alternate way to calculate
the nonlinear energy transfer coefficients is to first construct
an effective time series in real time domain using time series
of density and potential, then take the Fourier transform of
the constructed time series to get energy transfer coefficients.
This approach is much faster than directly calculating
bispectra in frequency domain. For example, the internal en-
ergy transfer coefficient can be formulated as

2 1

*
1 ˆ( , ) Re[ ( ) ]nT n z nω ω ωω ω φ⊥ ⊥= − ×∇ ⋅∇

2 11 ˆ ˆ ˆ( , ) Re[ ( ) ( )( ) ]uT z z zω ω ωωω φ φ φ∗
⊥ ⊥ ⊥ ⊥= − ×∇ ⋅ ×∇ ⋅∇ ×∇

( )a ( )b

energy transfer
to shear flow

(10K, 5K, 5K)

(0.3K, 10K, 9.7K)

(10K, 0.3K, 9.7K)

(0.3K, 10K, 9.7K)

(2.5K, 7.5K, 10K)

(4.8K, 10.2K, 15K)

losing energy

FIG. 6. �Color online� Measurement is
taken at r=3.6 cm, magnetic field of
1000 G, rf power of 1.5 kW, and pres-
sure of 3.0 mtorr. �a� Bispectral inter-
nal energy transfer Tn�� ,�1� �in both
�a� and �b� the x-axis corresponds to �
and y-axis corresponds to �1 in Eqs.
�7� and �8�, and notation �2=�−�1�.
�b� Bispectral kinetic energy transfer
Tu�� ,�1�.
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Tn � 
− Re	
�1

n�
� �ẑ � ����−�1

· ���n�1�
� �Re 	

�1=−fnyq

��−�1�
fnyq

�1=+fnyq

n�
�� ���−�1

�y

�n�1

�x
−

���−�1

�x

�n�1

�y
�� .

�13�

However it can also be reformulated as

Tn �
− Re 	
�1,�2

�=�1+�2

n�
� �ẑ � ����1

· ���n�2�
= 
Re��FFT�n���FFT
 ��

�y

�n

�x
−

��

�x

�n

�y
��� . �14�

According to Eq. �14�, one can first construct a time series
���� /�y���n /�x��− ���� /�x���n /�y��, then take the cross
power of density n and this effective time series. Note that
this approach can only produce the coefficients summed over
�1. When one desires to determine the interacting triplets,
then the results contained in Figs. 6�a� and 6�b� are needed
and the method computing convolution should be used. Due
to finite signal sampling frequency of real data acquisition
systems, these two methods may produce slightly different
curves �difference comes from the fact that fast Fourier
transform �FFT� of a finite time series is defined from circu-
lar convolution instead of a linear convolution�. However,
when the sampling frequency is sufficiently high, the differ-
ence is negligible. We plan to discuss this approach and com-
paring it to the cross-bispectral technique in a separate paper.

The method proposed in this paper is completely in fre-
quency domain. The disadvantage of this approach is that it
is not formulated in wavenumber space which may make
comparison with analytic theory and simulation more diffi-
cult �although in principle simulations can calculate these
quantities in frequency space exactly, provided that they are
run for enough time and that any possible frame transforma-
tion between laboratory and plasma center of mass frame due
to bulk rotation is accounted for�. One way to overcome this
difficulty could be combining these results with a measured
dispersion relation to relate frequencies to azimuthal wave
numbers. Also note that in this experiment, floating potential
instead of plasma potential is used to calculate electric field
and the fluid velocity. This approach has essentially ne-
glected the effect introduced by electron temperature fluctua-
tions. One interesting future work could be including density,
potential, and temperature fluctuations to study the quadratic
nonlinearity in a three-field model via a straightforward ex-
tension of this approach to such a system.
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